3.5.5 \(\int (a+b \log (c (d (e+f x)^m)^n))^3 \, dx\) [405]

3.5.5.1 Optimal result
3.5.5.2 Mathematica [A] (verified)
3.5.5.3 Rubi [A] (warning: unable to verify)
3.5.5.4 Maple [B] (verified)
3.5.5.5 Fricas [B] (verification not implemented)
3.5.5.6 Sympy [B] (verification not implemented)
3.5.5.7 Maxima [B] (verification not implemented)
3.5.5.8 Giac [B] (verification not implemented)
3.5.5.9 Mupad [B] (verification not implemented)

3.5.5.1 Optimal result

Integrand size = 20, antiderivative size = 121 \[ \int \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^3 \, dx=6 a b^2 m^2 n^2 x-6 b^3 m^3 n^3 x+\frac {6 b^3 m^2 n^2 (e+f x) \log \left (c \left (d (e+f x)^m\right )^n\right )}{f}-\frac {3 b m n (e+f x) \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^2}{f}+\frac {(e+f x) \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^3}{f} \]

output
6*a*b^2*m^2*n^2*x-6*b^3*m^3*n^3*x+6*b^3*m^2*n^2*(f*x+e)*ln(c*(d*(f*x+e)^m) 
^n)/f-3*b*m*n*(f*x+e)*(a+b*ln(c*(d*(f*x+e)^m)^n))^2/f+(f*x+e)*(a+b*ln(c*(d 
*(f*x+e)^m)^n))^3/f
 
3.5.5.2 Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.83 \[ \int \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^3 \, dx=\frac {(e+f x) \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^3-3 b m n \left ((e+f x) \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^2-2 b m n \left (f (a-b m n) x+b (e+f x) \log \left (c \left (d (e+f x)^m\right )^n\right )\right )\right )}{f} \]

input
Integrate[(a + b*Log[c*(d*(e + f*x)^m)^n])^3,x]
 
output
((e + f*x)*(a + b*Log[c*(d*(e + f*x)^m)^n])^3 - 3*b*m*n*((e + f*x)*(a + b* 
Log[c*(d*(e + f*x)^m)^n])^2 - 2*b*m*n*(f*(a - b*m*n)*x + b*(e + f*x)*Log[c 
*(d*(e + f*x)^m)^n])))/f
 
3.5.5.3 Rubi [A] (warning: unable to verify)

Time = 0.41 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.91, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {2895, 2836, 2733, 2733, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^3 \, dx\)

\(\Big \downarrow \) 2895

\(\displaystyle \int \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^3dx\)

\(\Big \downarrow \) 2836

\(\displaystyle \frac {\int \left (a+b \log \left (c d^n (e+f x)^{m n}\right )\right )^3d(e+f x)}{f}\)

\(\Big \downarrow \) 2733

\(\displaystyle \frac {(e+f x) \left (a+b \log \left (c d^n (e+f x)^{m n}\right )\right )^3-3 b m n \int \left (a+b \log \left (c d^n (e+f x)^{m n}\right )\right )^2d(e+f x)}{f}\)

\(\Big \downarrow \) 2733

\(\displaystyle \frac {(e+f x) \left (a+b \log \left (c d^n (e+f x)^{m n}\right )\right )^3-3 b m n \left ((e+f x) \left (a+b \log \left (c d^n (e+f x)^{m n}\right )\right )^2-2 b m n \int \left (a+b \log \left (c d^n (e+f x)^{m n}\right )\right )d(e+f x)\right )}{f}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {(e+f x) \left (a+b \log \left (c d^n (e+f x)^{m n}\right )\right )^3-3 b m n \left ((e+f x) \left (a+b \log \left (c d^n (e+f x)^{m n}\right )\right )^2-2 b m n \left (a (e+f x)+b (e+f x) \log \left (c d^n (e+f x)^{m n}\right )-b m n (e+f x)\right )\right )}{f}\)

input
Int[(a + b*Log[c*(d*(e + f*x)^m)^n])^3,x]
 
output
((e + f*x)*(a + b*Log[c*d^n*(e + f*x)^(m*n)])^3 - 3*b*m*n*((e + f*x)*(a + 
b*Log[c*d^n*(e + f*x)^(m*n)])^2 - 2*b*m*n*(a*(e + f*x) - b*m*n*(e + f*x) + 
 b*(e + f*x)*Log[c*d^n*(e + f*x)^(m*n)])))/f
 

3.5.5.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2733
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b 
*Log[c*x^n])^p, x] - Simp[b*n*p   Int[(a + b*Log[c*x^n])^(p - 1), x], x] /; 
 FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]
 

rule 2836
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] : 
> Simp[1/e   Subst[Int[(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{ 
a, b, c, d, e, n, p}, x]
 

rule 2895
Int[((a_.) + Log[(c_.)*((d_.)*((e_.) + (f_.)*(x_))^(m_.))^(n_)]*(b_.))^(p_. 
)*(u_.), x_Symbol] :> Subst[Int[u*(a + b*Log[c*d^n*(e + f*x)^(m*n)])^p, x], 
 c*d^n*(e + f*x)^(m*n), c*(d*(e + f*x)^m)^n] /; FreeQ[{a, b, c, d, e, f, m, 
 n, p}, x] &&  !IntegerQ[n] &&  !(EqQ[d, 1] && EqQ[m, 1]) && IntegralFreeQ[ 
IntHide[u*(a + b*Log[c*d^n*(e + f*x)^(m*n)])^p, x]]
 
3.5.5.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(385\) vs. \(2(121)=242\).

Time = 1.51 (sec) , antiderivative size = 386, normalized size of antiderivative = 3.19

method result size
parallelrisch \(\frac {6 \ln \left (f x +e \right ) b^{3} e^{2} m^{3} n^{3}-6 x \,b^{3} e f \,m^{3} n^{3}+6 x \ln \left (c \left (d \left (f x +e \right )^{m}\right )^{n}\right ) b^{3} e f \,m^{2} n^{2}+6 b^{3} e^{2} m^{3} n^{3}-6 \ln \left (f x +e \right ) a \,b^{2} e^{2} m^{2} n^{2}-3 x {\ln \left (c \left (d \left (f x +e \right )^{m}\right )^{n}\right )}^{2} b^{3} e f m n +6 x a \,b^{2} e f \,m^{2} n^{2}+x {\ln \left (c \left (d \left (f x +e \right )^{m}\right )^{n}\right )}^{3} b^{3} e f -6 x \ln \left (c \left (d \left (f x +e \right )^{m}\right )^{n}\right ) a \,b^{2} e f m n -3 {\ln \left (c \left (d \left (f x +e \right )^{m}\right )^{n}\right )}^{2} b^{3} e^{2} m n -6 a \,b^{2} e^{2} m^{2} n^{2}+3 \ln \left (f x +e \right ) a^{2} b \,e^{2} m n +3 x {\ln \left (c \left (d \left (f x +e \right )^{m}\right )^{n}\right )}^{2} a \,b^{2} e f -3 x \,a^{2} b e f m n +{\ln \left (c \left (d \left (f x +e \right )^{m}\right )^{n}\right )}^{3} b^{3} e^{2}+3 x \ln \left (c \left (d \left (f x +e \right )^{m}\right )^{n}\right ) a^{2} b e f +3 {\ln \left (c \left (d \left (f x +e \right )^{m}\right )^{n}\right )}^{2} a \,b^{2} e^{2}+3 a^{2} b \,e^{2} m n +x \,a^{3} e f -a^{3} e^{2}}{e f}\) \(386\)

input
int((a+b*ln(c*(d*(f*x+e)^m)^n))^3,x,method=_RETURNVERBOSE)
 
output
(6*ln(f*x+e)*b^3*e^2*m^3*n^3-6*x*b^3*e*f*m^3*n^3+6*x*ln(c*(d*(f*x+e)^m)^n) 
*b^3*e*f*m^2*n^2+6*b^3*e^2*m^3*n^3-6*ln(f*x+e)*a*b^2*e^2*m^2*n^2-3*x*ln(c* 
(d*(f*x+e)^m)^n)^2*b^3*e*f*m*n+6*x*a*b^2*e*f*m^2*n^2+x*ln(c*(d*(f*x+e)^m)^ 
n)^3*b^3*e*f-6*x*ln(c*(d*(f*x+e)^m)^n)*a*b^2*e*f*m*n-3*ln(c*(d*(f*x+e)^m)^ 
n)^2*b^3*e^2*m*n-6*a*b^2*e^2*m^2*n^2+3*ln(f*x+e)*a^2*b*e^2*m*n+3*x*ln(c*(d 
*(f*x+e)^m)^n)^2*a*b^2*e*f-3*x*a^2*b*e*f*m*n+ln(c*(d*(f*x+e)^m)^n)^3*b^3*e 
^2+3*x*ln(c*(d*(f*x+e)^m)^n)*a^2*b*e*f+3*ln(c*(d*(f*x+e)^m)^n)^2*a*b^2*e^2 
+3*a^2*b*e^2*m*n+x*a^3*e*f-a^3*e^2)/e/f
 
3.5.5.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 639 vs. \(2 (121) = 242\).

Time = 0.32 (sec) , antiderivative size = 639, normalized size of antiderivative = 5.28 \[ \int \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^3 \, dx=\frac {b^{3} f n^{3} x \log \left (d\right )^{3} + b^{3} f x \log \left (c\right )^{3} + {\left (b^{3} f m^{3} n^{3} x + b^{3} e m^{3} n^{3}\right )} \log \left (f x + e\right )^{3} - 3 \, {\left (b^{3} f m n - a b^{2} f\right )} x \log \left (c\right )^{2} - 3 \, {\left (b^{3} e m^{3} n^{3} - a b^{2} e m^{2} n^{2} + {\left (b^{3} f m^{3} n^{3} - a b^{2} f m^{2} n^{2}\right )} x - {\left (b^{3} f m^{2} n^{2} x + b^{3} e m^{2} n^{2}\right )} \log \left (c\right ) - {\left (b^{3} f m^{2} n^{3} x + b^{3} e m^{2} n^{3}\right )} \log \left (d\right )\right )} \log \left (f x + e\right )^{2} + 3 \, {\left (2 \, b^{3} f m^{2} n^{2} - 2 \, a b^{2} f m n + a^{2} b f\right )} x \log \left (c\right ) + 3 \, {\left (b^{3} f n^{2} x \log \left (c\right ) - {\left (b^{3} f m n^{3} - a b^{2} f n^{2}\right )} x\right )} \log \left (d\right )^{2} - {\left (6 \, b^{3} f m^{3} n^{3} - 6 \, a b^{2} f m^{2} n^{2} + 3 \, a^{2} b f m n - a^{3} f\right )} x + 3 \, {\left (2 \, b^{3} e m^{3} n^{3} - 2 \, a b^{2} e m^{2} n^{2} + a^{2} b e m n + {\left (b^{3} f m n x + b^{3} e m n\right )} \log \left (c\right )^{2} + {\left (b^{3} f m n^{3} x + b^{3} e m n^{3}\right )} \log \left (d\right )^{2} + {\left (2 \, b^{3} f m^{3} n^{3} - 2 \, a b^{2} f m^{2} n^{2} + a^{2} b f m n\right )} x - 2 \, {\left (b^{3} e m^{2} n^{2} - a b^{2} e m n + {\left (b^{3} f m^{2} n^{2} - a b^{2} f m n\right )} x\right )} \log \left (c\right ) - 2 \, {\left (b^{3} e m^{2} n^{3} - a b^{2} e m n^{2} + {\left (b^{3} f m^{2} n^{3} - a b^{2} f m n^{2}\right )} x - {\left (b^{3} f m n^{2} x + b^{3} e m n^{2}\right )} \log \left (c\right )\right )} \log \left (d\right )\right )} \log \left (f x + e\right ) + 3 \, {\left (b^{3} f n x \log \left (c\right )^{2} - 2 \, {\left (b^{3} f m n^{2} - a b^{2} f n\right )} x \log \left (c\right ) + {\left (2 \, b^{3} f m^{2} n^{3} - 2 \, a b^{2} f m n^{2} + a^{2} b f n\right )} x\right )} \log \left (d\right )}{f} \]

input
integrate((a+b*log(c*(d*(f*x+e)^m)^n))^3,x, algorithm="fricas")
 
output
(b^3*f*n^3*x*log(d)^3 + b^3*f*x*log(c)^3 + (b^3*f*m^3*n^3*x + b^3*e*m^3*n^ 
3)*log(f*x + e)^3 - 3*(b^3*f*m*n - a*b^2*f)*x*log(c)^2 - 3*(b^3*e*m^3*n^3 
- a*b^2*e*m^2*n^2 + (b^3*f*m^3*n^3 - a*b^2*f*m^2*n^2)*x - (b^3*f*m^2*n^2*x 
 + b^3*e*m^2*n^2)*log(c) - (b^3*f*m^2*n^3*x + b^3*e*m^2*n^3)*log(d))*log(f 
*x + e)^2 + 3*(2*b^3*f*m^2*n^2 - 2*a*b^2*f*m*n + a^2*b*f)*x*log(c) + 3*(b^ 
3*f*n^2*x*log(c) - (b^3*f*m*n^3 - a*b^2*f*n^2)*x)*log(d)^2 - (6*b^3*f*m^3* 
n^3 - 6*a*b^2*f*m^2*n^2 + 3*a^2*b*f*m*n - a^3*f)*x + 3*(2*b^3*e*m^3*n^3 - 
2*a*b^2*e*m^2*n^2 + a^2*b*e*m*n + (b^3*f*m*n*x + b^3*e*m*n)*log(c)^2 + (b^ 
3*f*m*n^3*x + b^3*e*m*n^3)*log(d)^2 + (2*b^3*f*m^3*n^3 - 2*a*b^2*f*m^2*n^2 
 + a^2*b*f*m*n)*x - 2*(b^3*e*m^2*n^2 - a*b^2*e*m*n + (b^3*f*m^2*n^2 - a*b^ 
2*f*m*n)*x)*log(c) - 2*(b^3*e*m^2*n^3 - a*b^2*e*m*n^2 + (b^3*f*m^2*n^3 - a 
*b^2*f*m*n^2)*x - (b^3*f*m*n^2*x + b^3*e*m*n^2)*log(c))*log(d))*log(f*x + 
e) + 3*(b^3*f*n*x*log(c)^2 - 2*(b^3*f*m*n^2 - a*b^2*f*n)*x*log(c) + (2*b^3 
*f*m^2*n^3 - 2*a*b^2*f*m*n^2 + a^2*b*f*n)*x)*log(d))/f
 
3.5.5.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 360 vs. \(2 (117) = 234\).

Time = 1.14 (sec) , antiderivative size = 360, normalized size of antiderivative = 2.98 \[ \int \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^3 \, dx=\begin {cases} a^{3} x + \frac {3 a^{2} b e \log {\left (c \left (d \left (e + f x\right )^{m}\right )^{n} \right )}}{f} - 3 a^{2} b m n x + 3 a^{2} b x \log {\left (c \left (d \left (e + f x\right )^{m}\right )^{n} \right )} - \frac {6 a b^{2} e m n \log {\left (c \left (d \left (e + f x\right )^{m}\right )^{n} \right )}}{f} + \frac {3 a b^{2} e \log {\left (c \left (d \left (e + f x\right )^{m}\right )^{n} \right )}^{2}}{f} + 6 a b^{2} m^{2} n^{2} x - 6 a b^{2} m n x \log {\left (c \left (d \left (e + f x\right )^{m}\right )^{n} \right )} + 3 a b^{2} x \log {\left (c \left (d \left (e + f x\right )^{m}\right )^{n} \right )}^{2} + \frac {6 b^{3} e m^{2} n^{2} \log {\left (c \left (d \left (e + f x\right )^{m}\right )^{n} \right )}}{f} - \frac {3 b^{3} e m n \log {\left (c \left (d \left (e + f x\right )^{m}\right )^{n} \right )}^{2}}{f} + \frac {b^{3} e \log {\left (c \left (d \left (e + f x\right )^{m}\right )^{n} \right )}^{3}}{f} - 6 b^{3} m^{3} n^{3} x + 6 b^{3} m^{2} n^{2} x \log {\left (c \left (d \left (e + f x\right )^{m}\right )^{n} \right )} - 3 b^{3} m n x \log {\left (c \left (d \left (e + f x\right )^{m}\right )^{n} \right )}^{2} + b^{3} x \log {\left (c \left (d \left (e + f x\right )^{m}\right )^{n} \right )}^{3} & \text {for}\: f \neq 0 \\x \left (a + b \log {\left (c \left (d e^{m}\right )^{n} \right )}\right )^{3} & \text {otherwise} \end {cases} \]

input
integrate((a+b*ln(c*(d*(f*x+e)**m)**n))**3,x)
 
output
Piecewise((a**3*x + 3*a**2*b*e*log(c*(d*(e + f*x)**m)**n)/f - 3*a**2*b*m*n 
*x + 3*a**2*b*x*log(c*(d*(e + f*x)**m)**n) - 6*a*b**2*e*m*n*log(c*(d*(e + 
f*x)**m)**n)/f + 3*a*b**2*e*log(c*(d*(e + f*x)**m)**n)**2/f + 6*a*b**2*m** 
2*n**2*x - 6*a*b**2*m*n*x*log(c*(d*(e + f*x)**m)**n) + 3*a*b**2*x*log(c*(d 
*(e + f*x)**m)**n)**2 + 6*b**3*e*m**2*n**2*log(c*(d*(e + f*x)**m)**n)/f - 
3*b**3*e*m*n*log(c*(d*(e + f*x)**m)**n)**2/f + b**3*e*log(c*(d*(e + f*x)** 
m)**n)**3/f - 6*b**3*m**3*n**3*x + 6*b**3*m**2*n**2*x*log(c*(d*(e + f*x)** 
m)**n) - 3*b**3*m*n*x*log(c*(d*(e + f*x)**m)**n)**2 + b**3*x*log(c*(d*(e + 
 f*x)**m)**n)**3, Ne(f, 0)), (x*(a + b*log(c*(d*e**m)**n))**3, True))
 
3.5.5.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 317 vs. \(2 (121) = 242\).

Time = 0.24 (sec) , antiderivative size = 317, normalized size of antiderivative = 2.62 \[ \int \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^3 \, dx=-3 \, a^{2} b f m n {\left (\frac {x}{f} - \frac {e \log \left (f x + e\right )}{f^{2}}\right )} + b^{3} x \log \left (\left ({\left (f x + e\right )}^{m} d\right )^{n} c\right )^{3} + 3 \, a b^{2} x \log \left (\left ({\left (f x + e\right )}^{m} d\right )^{n} c\right )^{2} + 3 \, a^{2} b x \log \left (\left ({\left (f x + e\right )}^{m} d\right )^{n} c\right ) - 3 \, {\left (2 \, f m n {\left (\frac {x}{f} - \frac {e \log \left (f x + e\right )}{f^{2}}\right )} \log \left (\left ({\left (f x + e\right )}^{m} d\right )^{n} c\right ) + \frac {{\left (e \log \left (f x + e\right )^{2} - 2 \, f x + 2 \, e \log \left (f x + e\right )\right )} m^{2} n^{2}}{f}\right )} a b^{2} - {\left (3 \, f m n {\left (\frac {x}{f} - \frac {e \log \left (f x + e\right )}{f^{2}}\right )} \log \left (\left ({\left (f x + e\right )}^{m} d\right )^{n} c\right )^{2} - {\left (\frac {{\left (e \log \left (f x + e\right )^{3} + 3 \, e \log \left (f x + e\right )^{2} - 6 \, f x + 6 \, e \log \left (f x + e\right )\right )} m^{2} n^{2}}{f^{2}} - \frac {3 \, {\left (e \log \left (f x + e\right )^{2} - 2 \, f x + 2 \, e \log \left (f x + e\right )\right )} m n \log \left (\left ({\left (f x + e\right )}^{m} d\right )^{n} c\right )}{f^{2}}\right )} f m n\right )} b^{3} + a^{3} x \]

input
integrate((a+b*log(c*(d*(f*x+e)^m)^n))^3,x, algorithm="maxima")
 
output
-3*a^2*b*f*m*n*(x/f - e*log(f*x + e)/f^2) + b^3*x*log(((f*x + e)^m*d)^n*c) 
^3 + 3*a*b^2*x*log(((f*x + e)^m*d)^n*c)^2 + 3*a^2*b*x*log(((f*x + e)^m*d)^ 
n*c) - 3*(2*f*m*n*(x/f - e*log(f*x + e)/f^2)*log(((f*x + e)^m*d)^n*c) + (e 
*log(f*x + e)^2 - 2*f*x + 2*e*log(f*x + e))*m^2*n^2/f)*a*b^2 - (3*f*m*n*(x 
/f - e*log(f*x + e)/f^2)*log(((f*x + e)^m*d)^n*c)^2 - ((e*log(f*x + e)^3 + 
 3*e*log(f*x + e)^2 - 6*f*x + 6*e*log(f*x + e))*m^2*n^2/f^2 - 3*(e*log(f*x 
 + e)^2 - 2*f*x + 2*e*log(f*x + e))*m*n*log(((f*x + e)^m*d)^n*c)/f^2)*f*m* 
n)*b^3 + a^3*x
 
3.5.5.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 772 vs. \(2 (121) = 242\).

Time = 0.32 (sec) , antiderivative size = 772, normalized size of antiderivative = 6.38 \[ \int \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^3 \, dx=\frac {{\left (f x + e\right )} b^{3} m^{3} n^{3} \log \left (f x + e\right )^{3}}{f} - \frac {3 \, {\left (f x + e\right )} b^{3} m^{3} n^{3} \log \left (f x + e\right )^{2}}{f} + \frac {3 \, {\left (f x + e\right )} b^{3} m^{2} n^{3} \log \left (f x + e\right )^{2} \log \left (d\right )}{f} + \frac {6 \, {\left (f x + e\right )} b^{3} m^{3} n^{3} \log \left (f x + e\right )}{f} + \frac {3 \, {\left (f x + e\right )} b^{3} m^{2} n^{2} \log \left (f x + e\right )^{2} \log \left (c\right )}{f} - \frac {6 \, {\left (f x + e\right )} b^{3} m^{2} n^{3} \log \left (f x + e\right ) \log \left (d\right )}{f} + \frac {3 \, {\left (f x + e\right )} b^{3} m n^{3} \log \left (f x + e\right ) \log \left (d\right )^{2}}{f} - \frac {6 \, {\left (f x + e\right )} b^{3} m^{3} n^{3}}{f} + \frac {3 \, {\left (f x + e\right )} a b^{2} m^{2} n^{2} \log \left (f x + e\right )^{2}}{f} - \frac {6 \, {\left (f x + e\right )} b^{3} m^{2} n^{2} \log \left (f x + e\right ) \log \left (c\right )}{f} + \frac {6 \, {\left (f x + e\right )} b^{3} m^{2} n^{3} \log \left (d\right )}{f} + \frac {6 \, {\left (f x + e\right )} b^{3} m n^{2} \log \left (f x + e\right ) \log \left (c\right ) \log \left (d\right )}{f} - \frac {3 \, {\left (f x + e\right )} b^{3} m n^{3} \log \left (d\right )^{2}}{f} + \frac {{\left (f x + e\right )} b^{3} n^{3} \log \left (d\right )^{3}}{f} - \frac {6 \, {\left (f x + e\right )} a b^{2} m^{2} n^{2} \log \left (f x + e\right )}{f} + \frac {6 \, {\left (f x + e\right )} b^{3} m^{2} n^{2} \log \left (c\right )}{f} + \frac {3 \, {\left (f x + e\right )} b^{3} m n \log \left (f x + e\right ) \log \left (c\right )^{2}}{f} + \frac {6 \, {\left (f x + e\right )} a b^{2} m n^{2} \log \left (f x + e\right ) \log \left (d\right )}{f} - \frac {6 \, {\left (f x + e\right )} b^{3} m n^{2} \log \left (c\right ) \log \left (d\right )}{f} + \frac {3 \, {\left (f x + e\right )} b^{3} n^{2} \log \left (c\right ) \log \left (d\right )^{2}}{f} + \frac {6 \, {\left (f x + e\right )} a b^{2} m^{2} n^{2}}{f} + \frac {6 \, {\left (f x + e\right )} a b^{2} m n \log \left (f x + e\right ) \log \left (c\right )}{f} - \frac {3 \, {\left (f x + e\right )} b^{3} m n \log \left (c\right )^{2}}{f} - \frac {6 \, {\left (f x + e\right )} a b^{2} m n^{2} \log \left (d\right )}{f} + \frac {3 \, {\left (f x + e\right )} b^{3} n \log \left (c\right )^{2} \log \left (d\right )}{f} + \frac {3 \, {\left (f x + e\right )} a b^{2} n^{2} \log \left (d\right )^{2}}{f} + \frac {3 \, {\left (f x + e\right )} a^{2} b m n \log \left (f x + e\right )}{f} - \frac {6 \, {\left (f x + e\right )} a b^{2} m n \log \left (c\right )}{f} + \frac {{\left (f x + e\right )} b^{3} \log \left (c\right )^{3}}{f} + \frac {6 \, {\left (f x + e\right )} a b^{2} n \log \left (c\right ) \log \left (d\right )}{f} - \frac {3 \, {\left (f x + e\right )} a^{2} b m n}{f} + \frac {3 \, {\left (f x + e\right )} a b^{2} \log \left (c\right )^{2}}{f} + \frac {3 \, {\left (f x + e\right )} a^{2} b n \log \left (d\right )}{f} + \frac {3 \, {\left (f x + e\right )} a^{2} b \log \left (c\right )}{f} + \frac {{\left (f x + e\right )} a^{3}}{f} \]

input
integrate((a+b*log(c*(d*(f*x+e)^m)^n))^3,x, algorithm="giac")
 
output
(f*x + e)*b^3*m^3*n^3*log(f*x + e)^3/f - 3*(f*x + e)*b^3*m^3*n^3*log(f*x + 
 e)^2/f + 3*(f*x + e)*b^3*m^2*n^3*log(f*x + e)^2*log(d)/f + 6*(f*x + e)*b^ 
3*m^3*n^3*log(f*x + e)/f + 3*(f*x + e)*b^3*m^2*n^2*log(f*x + e)^2*log(c)/f 
 - 6*(f*x + e)*b^3*m^2*n^3*log(f*x + e)*log(d)/f + 3*(f*x + e)*b^3*m*n^3*l 
og(f*x + e)*log(d)^2/f - 6*(f*x + e)*b^3*m^3*n^3/f + 3*(f*x + e)*a*b^2*m^2 
*n^2*log(f*x + e)^2/f - 6*(f*x + e)*b^3*m^2*n^2*log(f*x + e)*log(c)/f + 6* 
(f*x + e)*b^3*m^2*n^3*log(d)/f + 6*(f*x + e)*b^3*m*n^2*log(f*x + e)*log(c) 
*log(d)/f - 3*(f*x + e)*b^3*m*n^3*log(d)^2/f + (f*x + e)*b^3*n^3*log(d)^3/ 
f - 6*(f*x + e)*a*b^2*m^2*n^2*log(f*x + e)/f + 6*(f*x + e)*b^3*m^2*n^2*log 
(c)/f + 3*(f*x + e)*b^3*m*n*log(f*x + e)*log(c)^2/f + 6*(f*x + e)*a*b^2*m* 
n^2*log(f*x + e)*log(d)/f - 6*(f*x + e)*b^3*m*n^2*log(c)*log(d)/f + 3*(f*x 
 + e)*b^3*n^2*log(c)*log(d)^2/f + 6*(f*x + e)*a*b^2*m^2*n^2/f + 6*(f*x + e 
)*a*b^2*m*n*log(f*x + e)*log(c)/f - 3*(f*x + e)*b^3*m*n*log(c)^2/f - 6*(f* 
x + e)*a*b^2*m*n^2*log(d)/f + 3*(f*x + e)*b^3*n*log(c)^2*log(d)/f + 3*(f*x 
 + e)*a*b^2*n^2*log(d)^2/f + 3*(f*x + e)*a^2*b*m*n*log(f*x + e)/f - 6*(f*x 
 + e)*a*b^2*m*n*log(c)/f + (f*x + e)*b^3*log(c)^3/f + 6*(f*x + e)*a*b^2*n* 
log(c)*log(d)/f - 3*(f*x + e)*a^2*b*m*n/f + 3*(f*x + e)*a*b^2*log(c)^2/f + 
 3*(f*x + e)*a^2*b*n*log(d)/f + 3*(f*x + e)*a^2*b*log(c)/f + (f*x + e)*a^3 
/f
 
3.5.5.9 Mupad [B] (verification not implemented)

Time = 1.51 (sec) , antiderivative size = 242, normalized size of antiderivative = 2.00 \[ \int \left (a+b \log \left (c \left (d (e+f x)^m\right )^n\right )\right )^3 \, dx=x\,\left (a^3-3\,a^2\,b\,m\,n+6\,a\,b^2\,m^2\,n^2-6\,b^3\,m^3\,n^3\right )+{\ln \left (c\,{\left (d\,{\left (e+f\,x\right )}^m\right )}^n\right )}^2\,\left (\frac {3\,\left (a\,b^2\,e-b^3\,e\,m\,n\right )}{f}+3\,b^2\,x\,\left (a-b\,m\,n\right )\right )+{\ln \left (c\,{\left (d\,{\left (e+f\,x\right )}^m\right )}^n\right )}^3\,\left (b^3\,x+\frac {b^3\,e}{f}\right )+\frac {\ln \left (e+f\,x\right )\,\left (3\,e\,a^2\,b\,m\,n-6\,e\,a\,b^2\,m^2\,n^2+6\,e\,b^3\,m^3\,n^3\right )}{f}+\frac {\ln \left (c\,{\left (d\,{\left (e+f\,x\right )}^m\right )}^n\right )\,\left (3\,b\,f\,\left (a^2-2\,a\,b\,m\,n+2\,b^2\,m^2\,n^2\right )\,x^2+3\,b\,e\,\left (a^2-2\,a\,b\,m\,n+2\,b^2\,m^2\,n^2\right )\,x\right )}{e+f\,x} \]

input
int((a + b*log(c*(d*(e + f*x)^m)^n))^3,x)
 
output
x*(a^3 - 6*b^3*m^3*n^3 + 6*a*b^2*m^2*n^2 - 3*a^2*b*m*n) + log(c*(d*(e + f* 
x)^m)^n)^2*((3*(a*b^2*e - b^3*e*m*n))/f + 3*b^2*x*(a - b*m*n)) + log(c*(d* 
(e + f*x)^m)^n)^3*(b^3*x + (b^3*e)/f) + (log(e + f*x)*(6*b^3*e*m^3*n^3 - 6 
*a*b^2*e*m^2*n^2 + 3*a^2*b*e*m*n))/f + (log(c*(d*(e + f*x)^m)^n)*(3*b*e*x* 
(a^2 + 2*b^2*m^2*n^2 - 2*a*b*m*n) + 3*b*f*x^2*(a^2 + 2*b^2*m^2*n^2 - 2*a*b 
*m*n)))/(e + f*x)